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STRESS PULSES PRODUCED DURING THE FRACTURE
OF BRITTLE TENSILE SPECIMENS
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Abstract—A theoretical model similar to that used by Miklowitz is assumed for the fracture of uniaxial tensile
specimens. For this model both symmetric and antisymmetric pulses are propagated away from the fracture zone.
The theoretical predictions for surface strain are found to agree remarkably well with experimental results.

INTRODUCTION

MANY aspects of the relations between stress waves and the brittle fracture of solids have
been investigated recently. Certain studies, like the determination of stress distributions
around the tip of a running crack (e.g. [8, 11-13]), have involved a true interaction between
the two phenomena, whereas other studies have tended to suppress this interaction either
by treating fracture as the product of stress waves (e.g. [3, 9, 10]) or vice-versa. In the present
paper, as in [14], fracture is treated as the cause of stress pulses. The specimen geometry and
the type of loading are quite different from those used in [14], however ; here the stress pulses
produced in a loaded structural element when brittle fracture occurs at some cross-section
are investigated. Specifically, a circular rod is treated because elastic wave propagation in
such a specimen is fairly well understood [3-7].

The longitudinal pulses produced in metal wires when they fracture in uniaxial tension
have been studied experimentally by Oi [1] in connection with strain gage response.
However, in addition to the symmetric pulses which Oi observed, flexural (antisymmetric)
pulses are produced even though there may be no initial bending of the rod. Miklowitz [15]
recognized the existence of these flexural pulses and showed how they could reinforce
reflected longitudinal pulses to produce secondary fractures. The present paper lends
further experimental verification to Miklowitz’ results, and presents an alternative (numeri-
cal) solution to the basic wave equations.

THEORY

Oi [1] restricted himself to a study of the longitudinal pulses produced during the brittle
fracture of stretched wires, since his strain gages were used in pairs and were averaged. In
the present study, glass rods with individually monitored strain gages were employed, and
the presence of flexural pulses was also detected. The fractures appear to have started at
suitable surface flaws, and thus the fracture patterns are not radially symmetric. In the follow-
ing model, an attempt is made to relate observed flexural pulses (as well as longitudinal ones)
to a fracture pattern centered at the rod surface [15].
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An isotropic, linear elastic rod of radius R and of infinite length in the x-direction 1s
initially in a state of uniaxial tension of magnitude 64. At time { = 0, fracture begins at a
section of the rod which will be designated as x = 0. The fracture is assumed to initiate at a
point on the rod surface and to propagate in the plane x = 0 with a circular crack front of
constantly increasing radius. Behind the crack front the axial stress drops from its original
value to zero, whereas everywhere in front of the crack the axial stress is assumed to remain
at its initial value even though the crack propagation velocity v, is less than the maximum
wave speed in the material [8].

The normal stress resultant F(x, 7) acting at x = 0 is then a linear function of the ratio
AjA, (see Fig. 1), and is given by [1]
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where 1 is the dimensionless time v 1/2R. A resultant bending moment is also induced at
x = Osince the resultant normal force does not act along the rod axis during fracture. It can
be shown [2] that
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The longitudinal and flexural stresses defined by
GL(xv t) = F(x’ t)/A()a O.F(xa t) = M(X’ t)R/I (33, b)

(where I is the moment of the original cross-section about a diameter, nR*/4) are con-
tinuous functions of f at x = 0, as shown in Fig. 2. Due to symmetry, the shear force S(x, 1)

vanishes at x = 0, i.e.
50,7 =0, —0<t<w 4)
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Fic. 2. Time variation of the equivalent stresses ¢, and o acting at x = 0.

Equations {1, 2, 4) give the boundary conditions at x = O for the assumed fracture
process. Experiments on crack propagation in glass [9] have shown that the maximum
crack velocity is close to 0-38¢, [8], where c, is the elastic bar velocity (E/p)'/? (E is Young’s
modulus and p the mass density of the material). Given that for glass, ¢, = 2:09 x 10° in./sec
[3], one computes the duration of the pulse 2R /v, to be not less than approximately 6 usec
for a 0-5 in. diameter rod. Smooth longitudinal stress pulses of this duration can be repre-
sented quite well by simple bar theory since for the fundamental longitudinal mode the
dominant frequencies correspond to that part of the spectrum for which geometrical dis-
persion is negligible [3, 4]. Thus, simple bar theory is used. From this theory, the stress
a.(x, t) at any section x > (0 is given by

GL(x9 1) = O-L(O, Z—X/CQ) (5)

where o,(0, 1) is given by equation (3a) and the boundary condition (1).

The analysis of the flexural pulse which satisfies the boundary conditions (2) and (4) is
based on the Timoshenko beam theory. According to this theory, if w(x, t) denotes the
transverse displacement of the rod from its initial position, then w(x, t) obeys the linear
partial differential equation (see [3], p. 53)

CéK 2W9xxxx —-K 2(1 + W, x +E(K/ CO)zwmn +w,, =0 (6)

where K is the radius of gyration of the cross-section (R/2 in this case) and ¢ is a constant
dependent upon Poisson’s ratio v and the shape of the cross-section [S]. For a glass rod where
v = 0-25 ([3], p. 201), ¢’ takes the value 2.778.



1406 J. W. PuiLLIPS

Equation (6) is satisfied by w(x, 1) of the form
wix, 1} =Re {[W, exp(—b,x)+ W, exp(— b,x)] exp(iwt)} {7)

in which o is circular frequency and W, amd W, are complex constants, provided that b,
and b, satisfy

b,

b } = 77(—377{ —(1+&)F UL+ +4(co/wK)? ~ )2 12 (8)
2

\/’/2('0

Due to symmetry, only the two roots b; and b, corresponding to waves propagating or
decaying in the direction of increasing x are considered. For all w > 0, root b, is pure
imaginary and corresponds to the fundamental traveling mode. The dispersion relation
¢ = ¢(R/A), where c is the phase velocity iw/b; and A is the wavelength 27c/w, is shown as
branch 1 in Fig. 3. This phase velocity curve is known to be in extremely good agreement
with the one derived from the exact (three-dimensional elasticity) theory [3, 5] for a circular
rod.

Root b, is respectively real, zero, or pure imaginary when w is less than, equal to, or
greater than a certain critical frequency w,, whose value from equation (8) is seen to be
co/(K\/€). Thus for » > w,,, root b, corresponds to a traveling wave also ; the dispersion
curve associated with this second mode appears as branch 2 in Fig. 3. The shape of this curve
is similar to the shapes of the exact flexural dispersion curves of order 2 and higher, in that
the phase velocity becomes unbounded as R/A — 0. For large R/A, however, Timoshenko’s
second branch has the asymptotic value ¢, while all the higher modes in the exact theory
have the lower asymptotic value c¢g (Rayleigh surface wave velocity) [7]. Further discussion
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of Timoshenko’s second branch appears later in the paper. For w < ,,,root b, corresponds
to a spatially decaying wave.

A harmonic solution like (7) may also be assumed for the total angle of rotation afx, ) of a
cross-section, with different constants 4, and A, replacing W, and W,, respectively. From
the basic equations of the Timoshenko theory, it can be shown that these four constants are
interrelated :

—b A, = (b} +ew/ch)W, ®
—byA; = (b3 +E /W, (10}
The two remaining equations needed to determine the four constants uniquely come
from the boundary conditions specified at x = 0. The moment boundary condition (2) can

be satisfied over a finite time interval T by finding unique complex constants M, such that
the Fourier series representation

MO, 1) = Myo+ il Re {M,, exp(i2nzt/Ty)} (11)

coincides with the prescribed time dependence. Then since

M(x, ) = Ela,(x, 1) (12)
there is associated with each (nth) term in (11) an equation of the form
—b, A, —b A, = My/EI (13)

The vanishing shear resultant condition (4) is met if w, (0, ) —«(0, 1) = 0, i.e. if
—b W b, W, —A,—A4, =0 (14)
The simultaneous solution of equations (9, 10, 13, 14) yields 4,, 4,, W, and W, in terms of

M,, and appropriate substitution gives the following formula for the moment at any
position :

M6 1) = Moo+ 3. Re{[Q, expl—b1)+ Qs expl~bl[1AQ, + 02 Mo explin) (15
where
Qs = —bil1~b3/(b3 +0%/ch)]
and
Q2 = +by[1-b1/(b +ew?/c3)]

In equation (15), b, b, and M, are understood to be functions of the summing index n;
w = nwy where w, = 2n/Ty.

NUMERICAL RESULTS

In practice the summation in equation (15) is truncated at some number N determined
not only by the desired accuracy in pulse synthesis, but also by the choice of T;,. Flexural
waves propagate with a wide range of phase velocities and T, must be taken large enough
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to insure that negligible interference occurs between the (periodic) pulses Fourier syn-
thesized for x > 0. In the present work, T, was taken to be

TO - lf+2xmax/ ‘min (16)

where {, is the original fracture pulse duration 2R/v,, x,,,, is the maximum value of x for
which synthesis is desired, and ¢,,;, is the phase velocity of first-mode flexural waves for
w = w,. Actually, the first-mode phase velocity approaches zero as R/A — 0, and for this
reason equation (16) should be interpreted as only an estimate for the minimum value of 7,
necessary for reasonably accurate synthesis at x = x,,. .

Numerical results are presented in Figs. 3 and 4 for a 0-480 in. diameter glass rod with
Xmax = 0-191n. These dimensions coincide with experimental data presented later. For
the crack velocity v,, the theoretical limiting value [8] of 0-38 ¢, is assumed.

The phase velocity curves in Fig. 3 have been discussed earlier. Also shown in Fig. 3
are the associated group velocity curves [3]
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FiG. 4. Time variation of the synthesized axial stresses at y = + R for various positions x.

for the two Timoshenko branches. For branch 1, ¢, has its maximum value of about
0-639 ¢, at R/A ~ 0-36. For branch 2, ¢, is a monotonically increasing function having the
asymptotic value ¢, for large R/A.

The synthesized stress vs. time curves at various positions x are shown in Fig. 4. For
each value of x, the solid and dashed curves correspond to the extreme fiber stresses

o = F(x,1)/Aq + M(x, )R/I
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FiG. 6. Individual strain gage responses at x = 6-191in. in a 0-480 in, diameter notched
glass rod tensile specimen pulled to failure. Upper and lower traces correspond
to ¥ = F R, respectively. Sensitivity = 5 mV/cm, sweep rate = 10 psec/cm.
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for y = +R, respectively. The longitudinal and flexural pulses are coincident in time at
x = 0 and tend to separate as they propagate, apparently owing to the fact that the group
velocities for both branches of the Timoshenko theory are less than ¢, for all finite R/A.

Small oscillations are observed in Fig. 4 at x/D = 0 in the approximate time range of
6-10 usec. These oscillations, whose amplitude is less than 2 per cent of the maximum
flexural pulse amplitude, are due to truncation of the Fourier series at a finite N, in this
case 600. For these calculations, T, = 991 usec and thus the highest frequency component
has a period of 1-65 usec, roughly % the width of the flexural pulse. Additional computations
have shown that increasing N reduces this oscillation but otherwise leaves the results in
Fig. 4 unaltered.

The curves in Fig. 4 labeled x/D = 12.9 correspond to x = X,,,, . Here the longitudinal
pulse is clearly distinguished from the trailing flexural pulse. For this x, the minimum
expected arrival time of a flexural pulse containing only branch 1 excitation would be
46-3 psec (based on the maximum group velocity), and indeed the main part of the flexural
disturbance arrives at this time. A flexural pulse containing only branch 2 excitation could
be expected to arrive with the longitudinal pulse, i.e. at t = x/c, or 29-6 usec. The oscilla-
tions which appear in the wake of the longitudinal pulse and ahead of the main flexural
pulse are attributed to this second branch since the arrival times and wavelengths of small
segments of these oscillations correspond well with the branch 2 group velocity curve.

A characteristic feature of all the main flexural pulses synthesized for x > 0 is the
appearance of a slowly decaying, oscillatory component of nearly constant frequency. A
combination of factors is believed to be responsible for this behavior. First, the frequency
of these oscillations is extremely close to the critical frequency w,, at which root b, in
equation (7) vanishes. Now when b, (regardless of its type) is small in comparison with b, ,
the coefficient Q, in equation (15) is likewise negligible in comparison with @, . This implies
that, for frequencies in the neighborhood of w,,, nearly all the energy of the original pulse
goes into the first mode ; whereas for other frequencies, the energy is shared between the
modes. Second, it happens that the duration of the original pulse and the critical period
2n/w,, are of the same order of magnitude, so that Fourier components with frequencies in
this critical range are important in characterizing the pulse.

The present results of beam theory are only applicable to sufficiently large values of
x/D (say greater than 2). Later comparison with experimental results is made in a region
where beam theory is expected to apply.

EXPERIMENT

Tensile tests have been conducted on notched glass rods having a nominal diameter of
0-5in. The rods varied in length between 8 and 18 in. They were pulled slowly at constant
cross-head velocity in an Instron tester, and were observed to fracture at 1050 1b 4+ 10 per
cent, corresponding to a nominal stress roughly $ the quoted static ultimate tensile stress
[10]. The fracture pattern was found to be extremely reproducible and fairly insensitive
to the type of notch employed. The typical fracture shown in Fig. 5 bears a strong resem-
blance to the fractures in plates under uniaxial loading [11], and is characterized by multiple
chips, each chip containing several incomplete fracture surfaces. A delay of 1000 usec+ 1 per
cent was imposed between the approximate initiation time and the taking of the picture in
order to study the rigid-body motion of the chips. The crack-initiating notch is on the
left-hand side in this photograph.
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For triggering purposes, a thin coat of silver paint was applied around the notch and
across the expected crack path. With a battery and resistor, this conducting paint com-
pleted what was found to be a dependable triggering circuit, although the signal produced
was delayed from the time of fracture initiation by about the time required for crack
propagation through the paint area (approximately 3 usec).

For pulse detection in the specimen, diametrically opposed wire strain gages with a
gage length of 0-12 in. were mounted at various distances from the notch. They were oriented
to measure axial surface strains at the positions y = + R, and were instrumented so as to
permit the placing of approximate zero-strain traces on the Tektronix 551 dual-beam
oscilloscope prior to loading. A typical pair of unloading strain traces appears in Fig. 6.
Between the third and fourth cm in each trace, the longitudinal (symmetric) pulse arrives and
reduces the strain from the pre-fracture level to zero. (The zero-strain traces are only
approximately positioned vertically. Glass is a poor conductor of heat and consequently
the strain gages operate at elevated temperature ; the outputs were observed to vary slowly,
apparently in response to air currents near the specimen. Except for a vertical shift of the
entire trace, this slow fluctuation is of no importance in the dynamic measurements.) After
the longitudinal unloading pulse passes, the strains remain at the zero level until the arrival
of an antisymmetric disturbance near the beginning of the fifth cm. In the ninth cm,
partial reflection of the longitudinal pulse from the specimen holder is observed.

COMPARISON AND DISCUSSION

Comparison of the experimental pulses with those predicted theoretically is presented
in Fig. 7, where the experimental curve has been shifted both horizontally and vertically
(to account for the inherent triggering delay and thermal fluctuations, respectively). The
longitudinal pulse, as well as the main part of the flexural pulse, is observed to follow the
theoretical prediction remarkably well.

The flexural “precursor’ waves corresponding to branch 2 excitation in the Timoshenko
theory are not observed experimentally. (The dip in the experimental curve between 40 and
43 usec in Fig. 7 is a symmetric disturbance.} Also, high frequency oscillations are observed
in the wake of the experimental flexural pulse, but their frequency does not correspond
to the branch 2 critical frequency mentioned in the theory. These comparisons might suggest
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that incorporation of the second branch of Timoshenko’s theory into the present calcula-
tions is unnecessary. However, failure to incorporate the second mode makes it impossible
to satisfy the zero shear resultant condition (4), and leads to the prediction of a main
(branch 1) flexural pulse whose amplitude is approximately 14 times larger than the one
shown in Fig. 7.

At this point, a careful examination of the assumptions used in the theoretical model is
in order. The assumption of a constant crack velocity near the limiting value is felt to be
justified because the experimental fracture pattern shows almost immediate bifurcation of
the cracks from the notch region [11, 12]. Also justified to some extent is the assumption
that axial stresses everywhere in front of the propagating crack remain constant, in view of
photoelastic results for plates [13] in which this was found to be approximately true except
in the region of the crack tip itself.

Probably the most drastic simplification made in the theoretical analysis is that the
fracture is restricted to a single perpendicular plane. The broken specimen reveals a planar
crack only in the immediate neighborhood of the notch root. (For smaller specimen
diameters or for specimens broken at lower stress levels, the ratio of the planar crack area
to the cross-sectional area may be larger) Bifurcation and the formation of chips soon
dominate the fracture pattern, as seen in Fig. 5. Furthermore, the chips are ejected in the
negative y-direction with finite velocity, indicating that a non-zero resultant shearing force
acts on the remaining specimen, contrary to the vanishing shear condition (4) which follows
from symmetry in the theoretical model.

Assumptions other than those used in the present analysis could be used to generate
longitudinal and flexural pulses similar to the ones described here. The agreement between
theory and experiment (Fig. 7) shows that the assumptions made here give an adequate
description of the release pulses which propagate in the rod.

CONCLUSIONS

A glass rod tensile specimen with a suitable surface flaw fractures in a reproducible
multi-chip fashion and sustains not only an unloading longitudinal {(symmetric) pulse
propagating axially away from the fracture zone, but also a flexural (anti-symmetric) pulse
whose amplitude in terms of maximum surface strain is of the same order as that of the
longitudinal pulse. At a given axial position, the amplitudes, shapes and arrival times of
these longitudinal and flexural pulses can be predicted remarkably well by combining
approximate pulse propagation theories with a simple fracture model in which cleavage
is restricted to a plane normal to the rod axis. Specifically, Timoshenko’s beam theory is
found to apply. Incorporation of the second mode leads to certain oscillatory features not
observed experimentally, and serves principally to reduce the amount of energy propagated
in the first mode.

It is concluded that the fracture model proposed is adequate for predicting the longi-
tudinal and flexural pulse propagation in the rod.
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AGcTpakT—B Lenblo onucaHus paspylleHus Pa3TATHBaeMbix 00pa3lOB NpPeANoNaraers TeopeTH4eckas
MOJENb MOJ00Has MOAE/H KCIONb30BaHHONH MUKIIOBIEeM. B npeanoXxeHHO! MOAEIN KAK CHMMETPHYECKHE
TaK ¥ AHTMCHMMETPHYECKHE HMITYJIbCHl PACHPOCTPAHAIOTCA [ajieko OT 30HBI paspyiucHus. Haxonurcs,
YTO TEOPETHYECKHE TIPEIIONIONKEHHT, KACAIOIIHECH MOBEPXHOCTHBIX Ne(opManmif, 3aMavaTenbHO COTTACHbI
C IKCTIEPUMEHTAJIBHBIMY PE3YJIbTATAMM.



